کاربرد مدلهای شبکه عصبی در پیش بینی ورشکستگی اقتصادی شرکتهای بازار بورس
Authors
Abstract:
یکی از پیشرفته ترین مدلهای پیش بینی کننده ورشکستگی٬ مدل «شبکه عصبی مصنوعی» است. مطابق نتایج تحقیق ساختار اصلی پرسپترون سه و چهار لایه برای پیش بینی ورشکستگی شرکتها به مدلهایی شبیه یکدیگر منتهی می شود که در این میان شبکه سه لایه از قدرت پیش بینی بیشتری نسبت به شبکه چهار لایه برخوردار است.این تحقیق نشان می دهد که «به کارگیری مدلهای مبتنی بر شبکه عصبی توانایی مدیریتهای مالی را برای مقابله با نوسانهای اقتصادی و ورشکستگی نسبت به مدلهای رقیب افزایش می دهد». پیش بینی ورشکستگی اقتصادی شرکتهای بازار بورس در سالهای 1385 و 1386 و ترسیم روند ورشکستگی این شرکتها در دورÉ 1369- 1386 از دیگر بخشهای این مقاله است. نتایج نشان می دهد که در سال 1385 تحت تاثیر سیاستهای شفاف سازی روند ورشکستگی اقتصادی شرکتها به طور چشمگیری افزایش خواهد یافت که با سازگارشدن شرکتها با شرایط جدید٬ تا حدی این روند در سال 1386 تعدیل می شود.
similar resources
بررسی توانایی مدلهای پیش بینی ورشکستگی آلتمن و اهلسون در پیش بینی ورشکستگی شرکتهای پذیرفته شده در بورس اوراق بهادار
اهمیت پیش بینی ورشکستگی همواره برای مالکیت شرکتها رو به افزایش بوده است و اقتصادهای جهانی نیز امروزه نسبت به خطرات ناشی از تعهدات و دیون شرکتها، مخصوصاً پس از جریان سقوط سازمانهای بزرگی همچون وورلد کام و انرون و اینکه یکی از اهداف مهم قوانین باسل دو ، کاهش ریسک اعتباری می باشد، آگاه و حساس شده اند. از طرفی وضع نامطلوب مالی شرکت نیز باعث زیان برای اقشار مختلف جامعه و خصوصاً سرمایه گذاران شامل سهام...
15 صفحه اولکاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه
پیشبینی بارش یکی از مهمترین مسائل در زمینه مدیریت بهینه منابع آب در بخشهای مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیشبینی بارش زمستانه استان خراسان رضوی با استفاده از شبکههای عصبی مصنوعی میباشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقهای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...
full textپیش بینی ورشکستگی شرکت های پذیرفته شده در سازمان بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی
آگاهی از وضعیت مالی شرکت های بازار سرمایه همیشه یکی از دغدغه های سهامداران و تحلیلگران اقتصادی است؛ از این رو تحلیل گران و محقیق بازار های مالی همیشه به دنبال روش هایی برای پیش بینی شرایط آتی شرکت های حاضر در بازار سرمایه بودند. تحقیق پیش رو نیز به دنبال ایجاد مدلی برای پیش بینی ورشکستگی شرکت های حاضر در بازار بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی است. در این تحقیق از نسبت های مالی...
full textطراحی مدل پیش بینی ورشکستگی شرکت ها به وسیله شبکه های عصبی فازی (مطالعه موردی:شرکت های بورس اوراق بهادار تهران)
در این مقاله به منظور پیش بینی درصد ورشکستگی شرکت های بورسی از مدلهای شبکه عصبی فازی استفاده گردیده که توانایی کار در محیط پویا و غیر قطعی را امکان پذیر می سازد. در این میان با استفاده از منطق فازی متغییر های مختلف کلامی به منظور تعریف هر شاخص مشخص گردیده است و با ایجاد توابع عضویت هر کدام با استفاده شبکه عصبی به ایجاد یک سیستم یادگیرنده اقدام شده است. از میان مدل های مختلف شبکه عصبی،شبکه پرسی...
full textپیش بینی بازده شاخص بورس اوراق بهادار با استفاده از مدلهای شبکه ها عصبی مصنوعی شعاع پایه
تا کنون برای پیش بینی بازده سهام و بازده شاخص از روش های متعددی استفاده شده است در این میان هوش مصنوعی و شبکه های عصبی مصنوعی یکی از روش های پیش بینی بازده شاخص بوده است. در حال حاضر به دنبال بررسی عملکرد شبکه عصبی شعاع پایه برای پیشبینی بازده شاخص هستیم. بدین منظور از شاخص بورس اوراق بهادار تهران استفاده شده است و عملکرد شبکه عصبی شعاع پایه و شبکه عصبی پرسپترون مقایسه شدهاند. نوع آزمون عملکر...
full textMy Resources
Journal title
volume 3 issue 6
pages 1- 45
publication date 2006-09-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023